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Abstract

The Bayesian synthesis method is applied to data from two studies of Listeria monocytogenes grown in broth monocultures to draw inferences
about the joint distribution of two Baranyi growth model parameters–lag time and maximum specific growth rate. The resultant joint distribution
is then combined with prior distributions for the initial and maximum pathogen density parameters under competitive growth conditions. Finally,
the pathogen growth model is updated using the Sampling/Importance Resampling (SIR) algorithm with data on L. monocytogenes growth in
competition with natural microflora in fish. Although the latter data provide no information on the stationary phase to directly estimate the
maximum pathogen density parameter, combining them with relevant prior information provides a means to characterize L. monocytogenes
growth in a food with mixed microbial populations. Based on a specified tolerance for L. monocytogenes growth, the updated model provides a
storage time limit for fish held at 5 °C, pH 6.8, 43% CO2, 57% N2.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A variety of approaches have been proposed to evaluate and
compare the performance of predictive microbiology models
(Baranyi et al., 1999; Delignette-Muller et al., 1995; Duh and
Schaffer, 1993; McClure et al., 1993; Ross, 1996; Wijtzes et al.,
1993). Each of these methods presumes, implicitly or otherwise,
that an independent “gold standard” or benchmark data set is
available. In most risk assessment applications, however, ideal data
with which to compare model predictions are unavailable. This
problem is amplified when considering the variability and
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uncertainty associated with microbial community dynamics in
food (Powell et al., 2004). As an alternative or complement to the
model validation approach, Bayesian statistical methods such as
Bayesian synthesis (Raftery et al., 1995) and Sampling/Importance
Resampling (Rubin, 1988) offer means of combining information
from a variety of sources (laboratory experiments, field measure-
ments, and/or expert judgment) to develop and evaluate predictive
microbiologymodels for use inmicrobial pathogen risk assessment.

Raftery et al. (1995) first proposed the Bayesian synthesis
method to characterize uncertainty in mechanistic process
models (e.g., of population dynamics). A key feature of
Bayesian synthesis is that it assumes that prior information on
both the inputs and outputs is available from independent
information, as are the empirical data used to update the model.
In contrast, conventional Bayesian methods only permit
incorporation of information on model outputs as empirical
data to update the model. A principal advantage of Bayesian
synthesis, therefore, is that it permits incorporation of available
prior information on outputs as well as inputs of the model.
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The basic approach in Bayesian synthesis is to generate a
joint prior distribution on all model inputs and outputs. A
joint posterior distribution on the inputs and outputs is then
generated by importance sampling (i.e., weighted sampling).
The joint posterior distribution can be marginalized to obtain
posterior distributions on the inputs and outputs, as well as
the estimated correlation structure among the model
parameters. Both Bayesian synthesis and Markov Chain
Monte Carlo (MCMC) methods (e.g., the Metropolis–
Hastings algorithm and Gibbs sampling) are Bayesian
Monte Carlo procedures, which update uncertainty with
backward and forward propagation of the model (Brand and
Small, 1995). This feature permits the analyst to characterize
available, imperfect data on model inputs as prior distribu-
tions to be updated based on empirical evidence on the
model output. In contrast to the non-iterative importance
sampling of Bayesian synthesis, MCMC methods are based
on an iterative updating scheme that is repeated until the
sequence of parameter vectors converges. Both importance
sampling and MCMC methods may be computationally
intensive; however, MCMC methods also may fail to
converge to the stationary distribution, e.g., converging to
local rather than global maxima of the likelihood function
due to a multimodal probability surface (Robert and Casella,
1999).

This paper uses the Bayesian synthesis method to
combine informed prior distributions for pathogen growth
model inputs with data from two studies on Listeria
monocytogenes growth in broth monoculture. The result of
this synthesis is then combined with other information to
characterize L. monocytogenes growth in a mixed microbial
community in a food stored under modified atmosphere (i.e.,
reduced oxygen) conditions and refrigeration temperatures.
L. monocytogenes can be isolated from a wide variety of
environmental sources and animal reservoirs, including
asymptomatic humans, can grow at refrigeration tempera-
tures, and tolerates salt, freezing, drying, and a wide range
of pH conditions. Because L. monocytogenes is susceptible
to cooking and pasteurization, cross-contamination of ready-
to-eat food is the normal route of transmission in processed
foods. Modified atmosphere packaging combined with
refrigeration is a popular preservation technique for
minimally processed food because it inhibits the growth of
aerobic spoilage bacteria (e.g., Pseudomonas spp.) and
oxidative processes. L. monocytogenes is still able to
grow, however, at low temperatures in 100% carbon dioxide
(CO2) (Pin et al., 2001). In the United States, the
population-based incidence of listeriosis is low relative to
other foodborne pathogens (e.g., Norwalk-like viruses,
Salmonella, and Campylobacter). Among illnesses due to
foodborne pathogens, however, listeriosis has one of the
highest case-fatality rates (approximately 20%), particularly
in susceptible subpopulations—the elderly and perinatal age
groups and immunocompromised individuals. Listeriosis can
result in septicemia, meningitis, and perinatal miscarriage,
stillbirth, or meningitis. Listerial gastroenteritis, a milder
form of L. monocytogenes infection resulting in flu-like
symptoms, has recently been recognized (note that the
reported case-fatality rate is based on the more severe
listeriosis case definition). In the United States, deli meats,
frankfurters (not reheated), and pâté and meat spreads are
estimated to pose the highest risk of listeriosis on a per
serving basis, while the highest burden of listeriosis on a
per annum basis has been attributed to deli meats (Health
and Consumer Protection Directorate, 1999; Centers for
Disease Control and Prevention, 2003; Center for Food
Safety and Applied Nutrition, 2003; Food Safety and
Inspection Service, 2003).

The plan for this paper is as follows: Sec. 2) the Baranyi
pathogen growth model is specified; Sec. 3) informed priors
on the Baranyi model inputs provide an implied prior on L.
monocytogenes growth in monoculture at 5 °C, pH 7; Sec.
4) data reported by Buchanan et al. (1989) provide an
independent stated prior on L. monocytogenes growth at 5
°C, pH 7 in broth monoculture; Sec. 5) data reported by Pin
et al. (2001) on L. monocytogenes growth at 5 °C, pH 7 in
broth monoculture under elevated CO2 levels are introduced;
Sec. 6) a Bayesian synthesis algorithm is used to update the
Baranyi model inputs and outputs for L. monocytogenes
growth in broth monoculture at 5 °C, pH 7 under elevated
CO2 levels; Sec. 7) data reported by the Universidad
Complutense de Madrid, Spain on L. monocytogenes growth
in competition with natural microflora in fish at 5 °C, pH
6.8, 43% CO2, 57% N2 are introduced; Sec. 8) the updated
joint distribution of two Baranyi model parameters–lag time
and maximum specific growth rate—obtained from the
Bayesian synthesis procedure is combined with prior
distributions for initial and maximum population density
for pathogen growth in mixed culture, and the observed data
are used to update the Baranyi model for L. monocytogenes
growth in food with mixed microbial populations using the
Sampling/Importance Resampling (SIR) algorithm; Sec. 9)
sensitivity analysis; Sec. 10) results; and Sec. 11) discussion.

2. Pathogen growth model

Baranyi and Roberts (1994) originally introduced the
Baranyi pathogen growth model. It has been parameterized
as follows (Wilson, 1999):

yt ¼ y0 þ y1
lnð10Þ−

y2
lnð10Þ

where

yt ¼ log10cfu=g at time tðhÞ
y0 ¼ log10cfu=g at t ¼ 0

y1 ¼ l t þ ln e−l t−e−l ðtþtlagÞ þ e−l tlag
h i

y2 ¼ ln 1þ 10ðy0−ymaxÞðel ðt−tlagÞ−e−l tlagÞ
h i

ymax ¼ maximum population density ðlog10cfu=gÞ
tlag ¼ lag timeðhÞ
l ¼ maximum specific growth rateðh−1Þ ð1Þ



Table 1
Prior distributions for Baranyi growth model input parameters for L.
monocytogenes growth at 5 °C, pH 7 in broth monoculture

Input Distribution Dist. parameters 95% confidence interval Units

y0 Uniform Min=2, Max=4 N/A log10 cfu/g
ymax Normal Mean=9, Stdev=1 7.04–10.96 log10 cfu/g
tlag Lognormal Mean=76.4939,

Stdev=61.0093
14.8–239.2 h

μ Lognormal Mean=0.0362,
Stdev=0.0203

0.0113–0.0881 h−1

(GT=7.9–61.3 h)
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In this form, the parameters of the Baranyi growth model
have intuitive biological interpretations, which facilitates
specification of their prior distributions. In this paper, we
consider the Baranyi growth model without residual variance
(i.e., the model contains no error term). Therefore, the output
distribution characterizes uncertainty about the mean growth
response (due to parameter uncertainty), but does not account
for natural or unexplained variability about the estimated
growth curve.

3. Prior distributions for model inputs of pathogen growth
in monoculture

Broad informed prior distributions on the Baranyi model
inputs are specified to capture the entire range of feasible
parameter values under monoculture growth conditions. Here,
we consider L. monocytogenes growth in broth monoculture at
5°C, pH 7.

3.1. Maximum specific growth rate (μ)

According to an international panel of microbiological food
safety experts, 29 h is a typical generation time (GT, the time
required for population-doubling) for L. monocytogenes at
5 °C, pH 7 (Food and Agriculture Organization of the United
Nations, 1999). A GT value of 29 h corresponds to a
maximum specific growth rate of μ=0.0239 h−1. The GT
point estimate referenced by Food and Agriculture Organiza-
tion of the United Nations (1999) was based on a model
developed by Tienungoon at the University of Tasmania,
Australia (Ross et al., 2000). A search of the Combined
Database (ComBase) of Predictive Microbiology Information
(www.combase.cc; Baranyi and Tamplin, 2004) was con-
ducted to characterize the full range of maximum specific
growth rate values for L. monocytogenes at 5 °C, pH 7. A
query of ComBase for L. monocytogenes grown at 4–6 °C
with μN0 (to filter out lethality treatment datasets) generated
469 values of μ with a mean of 0.0362 h−1 (GT=19.1 h) and
a standard deviation (stdev) of 0.0203. A lognormal
distribution with these parameter values has a mode of
0.0240 h−1 (GT=28.9 h). Therefore, this distribution was
judged consistent with the expert-based estimate of a typical μ
value, while capturing the parameter’s full range of potential
values under the pathogen growth model (i.e., 0≤μb∞).

3.2. Lag time (tlag)

Based on a literature review, Ross (1999) observed that the
distribution of tlag relative to μ peaks in the range of 4–6 GT
equivalents and has an upper 95th percentile in the range of
10–15 GT equivalents. Based on the sample mean of μ
obtained above (0.0362 h−1), a lognormal distribution with a
mean of 4 GT equivalents and a 95th percentile of 10 GT
equivalents has mean value of 76.4939 h and stdev of
61.0093. The lognormal distribution captures the parameter’s
full range of potential values under the model (i.e.,
0≤ tlagb∞).
3.3. Maximum population density (ymax)

The maximum population density for microbial monocul-
tures is generally regarded to be approximately 10 log10 colony
forming units per gram (cfu/g). Because ymax is expressed on a
logarithmic scale, the unbounded normal distribution captures
the full range of potential values (−∞bymaxb+∞).

3.4. Initial population density (y0)

The initial inoculum varies among experimental trials. The L.
monocytogenes inoculum levels used by Buchanan et al. (1989)
and Pin et al. (2001) ranged from 2–4 log10 cfu/g.

Based on the above information, priors for the growth
model parameters for L. monocytogenes growth at 5 °C, pH 7
in broth monoculture were specified (Table 1). The prior
parameter values can be combined under the Baranyi growth
model (1) to obtain predictions of mean growth at time t. In
this stage of the analysis, we fix t=240 h (10 d) for simplicity.
A sample of size m=30,000 values for y0, ymax, tlag, and μ was
generated using Palisades© @Risk™ (Ver. 4.5), an add-on to
Microsoft© Excel™ (Ver. 9.0), and the Baranyi model was
run to obtain the corresponding predicted values of mean
growth after 240 h. Here, growth rather than absolute level is
the desired output because it is less dependent on the initial
inoculum (y0), which varies among trials. We assume that the
prior inputs are independent and allow the model and the data
to induce covariance in the posterior distribution of the model
parameters. Thus, the model parameters provide an implied
prior on the desired output, mean growth of L. monocytogenes
in monoculture at 5°C, pH 7 for 240 h (ĝ240). The sample
distribution of the implied prior is positively skewed and
bimodal (with a second mode near zero due to combinations
of long lag time and low growth rate values), with mean=
2.4987 log10 cfu/g (95% confidence interval=0.2870−5.8196)
(Fig. 1).

4. Stated prior on pathogen growth in broth monoculture

Buchanan et al. (1989) conducted 21 trials on L.
monocytogenes (Scott A strain) growth in broth (TPB)
monoculture at 5 °C, pH 7 under a range of conditions
(aerobic and anaerobic, various salt and water activity levels).
Here, we consider the results from nine trials conducted at
5 °C, pH 7 under aerobic conditions without growth inhibitors

http:www.combase.cc
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Fig. 1. Implied prior distribution for L. monocytogenes growth at 5 °C, pH 7, 240 h. Hash marks represent histogram bins of width 0.1 log10 cfu/g. Smooth curve
represents non-parametric density estimate obtained by a normal (Gaussian) kernel with stdev (bandwidth) 0.1 log10 cfu/g.
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(ComBase records: LM114_1, LM115_1, LM115_2, LM116_1,
LM116_2, LM117_1, LM117_2, LM118_1, LM118_2) (Fig. 2).
Linear interpolation between the two measurements bracketing
t=240 h for each trial (indicated by the vertical reference line in
Fig. 2) provides nine estimates of L. monocytogenes growth
after 240 h (g240) (Table 2). Linear interpolation (rather than
model fitting) is used to maintain independence between the
stated prior and information provided by the Baranyi growth
model. Based on the nine estimates of g240, the stated prior for L.
monocytogenes growth in broth monoculture at 5 °C, pH 7 for
240 h is specified as: ḡ240∼normal (mean=4.6432, standard
error (stderr)=0.3898) (note that the stated prior characterizes
uncertainty about the mean response rather than natural
variability about the mean).

The Buchanan et al. (1989) data also provide an estimate of
variability in L. monocytogenes growth under replicated
environmental conditions with stdev=1.1693 after 240 h of
growth (Table 2). Note, however, that this variability is not
constant over the growth curve (Fig. 2). Therefore, we assume
that the coefficient of variation cv ¼ stdev

mean
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Fig. 2. Estimating stated prior on L. monocytogenes growth at 5 °C, pH 7, 240 h i
conducted without growth inhibitors under aerobic conditions (Buchanan et al., 198
constant during the exponential growth phase (cv=0.25). This
information is used below for likelihood computations and for
estimating the mixed culture growth variability distribution.

5. Observed data on pathogen growth in broth
monoculture under elevated CO2

Pin et al. (2001) conducted 16 trials on L. monocytogenes (4b
Serotype, Scott A strain) growth in broth (TSB) monoculture at
5 °C, pH 7 under a range of atmospheric conditions. Here, we
consider the results from 13 trials conducted under elevated
CO2 atmospheric conditions (28–75% CO2) (ComBase records:
LB_2, LB_3, LB_4, LB_5, LB_7, LB_8, LB_9, LB_11,
LB_12, LB_13, LB_14, LB_15, LB_16) (Fig. 3). Linear
interpolation between the two measurements bracketing
t=240 h (indicated by the vertical reference line in Fig. 3)
provides 13 observations on L. monocytogenes growth after
240 h (g240obs) with a mean of 3.0405 log10 cfu/g (Table 2). For
the trials reported by Pin et al. (2001), variation in the observed
data reflects growth under different modified atmospheric
400 500

LM114_1

LM115_1

LM115_2

LM116_1

LM116_2

LM117_1

LM117_2
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n broth monoculture. Legend key refers to ComBase Record ID for nine trials
9).



Table 2
L. monocytogenes growth after 240 h in broth monoculture at 5 °C, pH 7

(Buchanan et al., 1989) — aerobic
conditions without growth inhibitors

(Pin et al., 2001) — elevated CO2

ComBase record g240 (log10cfu/g) ComBase record g240 (log10cfu/g)

LM114_1 4.2850 LB_2 4.2468
LM115_1 4.1220 LB_3 3.2695
LM115_2 3.6920 LB_4 3.3700
LM116_1 3.6367 LB_5 2.6074
LM116_2 3.3800 LB_7 3.0584
LM117_1 4.9665 LB_8 2.6123
LM117_2 4.7017 LB_9 2.2030
LM118_1 6.5344 LB_11 2.7707
LM118_2 6.4707 LB_12 3.1321
Mean 4.6432 LB_13 3.0222
Stdev 1.1693 LB_14 3.5570
Stderr 0.3898 LB_15 3.1788
cv 0.2518 LB_16 2.4985

Mean 3.0405
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conditions rather than intrinsic variability in pathogen growth
under replicated conditions.

6. Bayesian synthesis

This paper employs a variant of the Bayesian synthesis
method based on Green et al. (1999). The Bayesian synthesis
method is used to update the joint distribution of two Baranyi
model parameters–lag time and maximum specific growth
rate—for growth of L. monocytogenes in monoculture at 5 °C,
pH 7 under elevated carbon dioxide (CO2) levels. The
information presented above is synthesized using the following
algorithm.

a. Compute the density of the pathogen growth model
predictions (ĝ240) on the implied prior.

Because the implied prior distribution is skewed and bimodal
(Fig. 1), the density of the model predictions was estimated
using a kernel estimator, a widely used non-parametric data
smoothing technique (Bowman and Azzalini, 1997). The
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Fig. 3. Observed data on L. monocytogenes growth at 5 °C, pH 7, 240 h in broth mon
Record ID for 13 trials conducted with elevated carbon dioxide levels (Pin et al., 20
density of each of the m=30,000 sample values of ĝ240 on
the implied prior was estimated using a normal (Gaussian)
kernel with a bandwidth (stdev) of 0.1 log10 cfu/g. The
procedure was performed using the sm.density function from
the sm library, a suite of Insightful© S-PLUS™ routines
(Bowman et al., 2000).

b. Compute the density of the pathogen growth model
predictions (ĝ240) under the stated prior (ḡ240).

The density of each of the m=30,000 sample values of ĝ240
under the stated prior (ḡ240∼normal (mean=4.6432, stderr=
0.3898)) was obtained using the Microsoft© Excel Normdist
function and normalizing the densities to sum to 1.

c. Compute the likelihood of the pathogen growth model
predictions given the observed data on L. monocytogenes
growth under elevated CO2 (L(ĝ240|g240obs)).

The empirical data used to update the monoculture growth
model are the 13 observations under elevated CO2 reported by
Pin et al. (2001). For the likelihood computations, we estimate
the standard deviation is equal to 0.7601, based on a mean of
3.0405 and assuming cv=0.25. (The cv value is based on the
Buchanan et al. (1989) replicate trials.) In general, the
likelihood of the model prediction given the observed data is
estimated as:

Lðg ̂240jg240obsÞ ¼j
16

n¼1
Normalðgnjmean ¼ g ̂240; stdev¼0:7601Þ

ð2Þ
The likelihoods for the m=30,000 simulated sample values

are obtained and normalized.
Simulated parameter combinations (y0, ymax, tlag, μ) derived

from the priors that imply growth levels not supported by the
growth data from elevated CO2 trials reported by Pin et al.
(2001) result in very small likelihoods (here, normalized
likelihood values ranged from 4.41E−196–3.05E−04).

d. Compute importance sampling weights.
Let qθ(g) represent the prior distribution on the output

implied by the pathogen growth model parameter estimates
(obtained in step 6a, with θ=y0, ymax, tlag, μ). Let qg(g) represent
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the independent stated prior distribution on the output (obtained
in step 6b). Geometric pooling of qθ(g) and qg(g) yields:

qphðgÞ~qhðgÞaqgðgÞ1−a ð3Þ
where qθ

p(g) is the pooled distribution. We must have α=0.5 to
ensure that the method is invariant to relabeling of inputs and
outputs. That is, we obtain the same result running the model
“forwards” or “backwards” (note that the stated prior on the
outputs could be used to develop an implied prior on the inputs
by running the model backwards. But the implied input
distributions will not be identical to specified priors for the
input parameters. Pooling the implied and stated prior distribu-
tions avoids the incoherence of two different “priors” for both
the inputs and outputs). In addition, setting α=0.5 places equal
weight on both the implied and stated priors (Green et al., 1999).

A posterior distribution for the output (π(g)) could be
developed using qθ

p(g). The posterior distribution for the
Baranyi growth model parameters (π(θ)) is not directly
available from this posterior, however, because numerous
parameter value combinations (Z=θ1, θ2, ... ) may obtain the
same output value (gk). This problem is solved by assigning a
collective probability for all parameter combinations that yield a
given output value equal to the pooled density (qθ

p (gk)) and
allocating the collective probability among parameter value
combinations in proportion to the prior distribution on θ
(qθ(θZ)) (Green et al., 1999):

qphðhZÞ ¼ qpgðgkÞ
qhðhZÞ
qhðhkÞ ð4Þ

According to (3), with α=0.5

qpgðgkÞ~ qhðgkÞ0:5qgðgkÞ0:5 ð5Þ
and therefore

qphðhZÞ~ qhðhZÞ qgðgkÞ
qhðgkÞ

� �0:5

ð6Þ

Thus the posterior distribution for Baranyi growth model
parameters can be obtained:

pðhÞ~ qphðhÞLðg ̂jgobsÞ ð7Þ
Importance sampling weights are computed as follows

(Green et al., 1999):

wm ¼ qgðgÞ
qhðgÞ

� �0:5

Lðg ̂240jg240obsÞ ð8Þ

Note that if the implied and stated densities are identical,
then the importance weights are equal to the likelihood of the
model predictions given the new data (here, normalized weight
values ranged from 2.44E−208–3.66E−04).

e. Sample values from the joint input and implied output
distribution with probabilities proportional to wm.

Sampling/Importance Resampling (SIR) is a noniterative
algorithm used to simulate Bayesian posterior distributions
(Rubin, 1988). (This procedure is also referred to as a weighted
bootstrap (Smith and Gelfand, 1992).) In SIR, m samples are
drawn from an initial approximation to the desired distribution,
and then lbm samples are randomly drawn from the first finite
sample (m) with probability proportional to their importance
(i.e., sampling weight). The rationale of the SIR algorithm is
based on the fact that as m / l→∞, the l sample values represent
independent draws from the desired posterior distribution
(Rubin, 1988). In practice, the choice of a ratio m / l depends
on the adequacy of the initial approximation. If the initial
approximation is perfect, then m / l=1 is proper, but as the initial
approximation to the posterior gets poorer, m / l must increase.
Rubin (1987) suggests that a ratio ofm / l=20 will often be more
than adequate. Therefore in this analysis (with m=30,000),
l=1500 values from the simulated joint distribution q(θ,ĝ240)
are drawn using Monte Carlo simulation from the empirical
distribution with the normalized importance sampling weights
obtained in the previous step. The resulting samples are
approximate samples from the geometrically pooled posterior
distributions for the pathogen growth model inputs and output p
(θ,ĝ240).

Monte Carlo simulation was performed with Latin Hyper-
cube sampling (1,500 iterations) using @Risk™. Latin
Hypercube sampling involves stratified sampling without
replacement in which the model input distributions are split
into l intervals of equal probability. In comparison to simple
random sampling, Latin Hypercube sampling ensures a
representative sample is drawn from all parts of an input
distribution (Vose, 2000). Once the Bayesian synthesis model
was prepared, the Monte Carlo simulation itself required less
than three minutes on a 2.40 GHz cpu personal computer.
However, model set-up, including generation of the model input
values and calculation of the importance sampling weights,
requires substantially more time and considerable effort.

In sum, Bayesian synthesis of the informed priors on the
Baranyi growth model parameters, the stated prior based on
Buchanan et al. (1989), and the observed data based on Pin et al.
(2001) results in updated distributions of the model inputs—y0,
ymax, tlag, and μ—and the model output—growth of L.
monocytogenes at 5 °C, pH 7 after 240 h in broth monoculture
under elevated CO2 levels.

7. Observed data on pathogen growth in food with mixed
microbial populations

The Veterinary Faculty of Universidad Complutense, Madrid
provided data from a trial on L. monocytogenes (4b Serotype,
Scott A strain) grown in competition with natural microflora in
fish (hake) at 5°C, pH 6.8 under modified atmospheric
conditions (43% CO2, 57% N2) (ComBase record P_11L,
Table 3). These observed data are used to update the Baranyi
model for L. monocytogenes growth in mixed microbial
populations using the SIR algorithm.

8. Update model for pathogen growth in food with mixed
microbial populations

The first step in the SIR algorithm is to “obtain a decent first
pass approximation” to the desired distribution (Rubin, 1988).



Table 3
L. monocytogenes growth under competition in Hake at 5°C, pH 6.8, 43% CO2,
57% N2

Time (h) log10 cfu/g

0.00 3.490
72.42 3.980
120.07 4.230
168.49 4.590
240.03 5.760
288.09 5.100
336.07 5.740
408.10 6.410

Source: ComBase record P_11L.
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The updated joint distribution of tlag and μ obtained by Bayesian
synthesis of broth monoculture data provides a reasonable first
approximation to these input parameters for modeling L.
monocytogenes growth in food with mixed microbial popula-
tions under similar environmental conditions (i.e., temperature,
pH, atmosphere). The updated joint distribution for tlag and μ
reflects the correlation in the posterior distribution of the
Baranyi model parameters induced by the Bayesian synthesis
procedure. In this manner, we have used the Bayesian synthesis
procedure to draw inferences from broth monoculture data to
obtain an informed prior for modeling pathogen growth in food
with mixed microbial populations.

Buchanan and Bagi (1999) demonstrated, however, that L.
monocytogenes grown in co-culture with a spoilage organism
(Pseudomonas fluorescens) can attain maximum population
densities that are lower, higher, or the same compared to levels
of the pathogen in monoculture, depending on the temperature,
acidity, and availability of water in the surrounding environ-
ment. Therefore, in order to model the growth of L.
monocytogenes in food with mixed microbial populations, we
combine the updated joint distribution of tlag and μ obtained by
the Bayesian synthesis procedure with prior distributions for y0
and ymax appropriate for mixed culture conditions.

Priors for the Baranyi model parameters for L. monocyto-
genes growth in fish with mixed microbial populations at 5 °C,
pH 6.8 under elevated CO2 conditions were specified as in Table
4. The L. monocytogenes inoculum (y0) in the U. Madrid fish
trial (ComBase record P_11L) is 3.49 log10cfu/g (Table 3), with
measurement was by colony counts. A normal distribution with
mean=3.49 and stdev=0.1745 (i.e., cv=0.05, 95% confidence
interval=3.15−3.83 log10 cfu/g) captures the full range of
Table 4
Prior distributions for Baranyi growth model input parameters for L.
monocytogenes grown in competition with natural microflora in fish (Hake) at
5 °C, pH 6.8, 43% CO2, 57% N2

Input Distribution Dist. parameters 95% confidence interval Units

y0 Normal Mean=3.49,
Stdev=0.349

2.8060–4.1740 log10 cfu/g

ymax Uniform Min=y0, Max=11 3.5897–10.8128 log10 cfu/g
tlag Lognormal Mean=53.8320,

Stdev=29.4714
17.3–128.8 h

μ Lognormal Mean=0.0419,
Stdev=0.0098

0.0227–0.0611 h−1

r(tlag,μ)=0.83 (GT=11.3–30.6 h)
potential values for y0 (by comparison, according to the U.S.
Environmental Protection Agency drinking water laboratory
quality assurance criteria, colony counts from the same sample
by two or more analysts should agree within 10% (EPA, 1997)).

The U. Madrid fish trial (ComBase record P_11L, Table 3)
contains no data to indicate the stationary phase of the growth
curve. Such microbial growth experiments are not uncommon
(e.g., Fig. 3), and this may arise because the study objective is to
estimate the maximum specific growth rate or time until a
specified amount of growth occurs. In such cases, however, an
algorithm fitting a sigmoid curve to the data may fail (e.g., by
generating nonsensical ymax parameter values). Baranyi et al.
(1993) suggest that the solution can be either to fix ymax or to
model only the lag and exponential phase of growth. Instead, we
exploit prior information to characterize uncertainty about the
complete growth curve. Here, the prior distribution for ymax

for pathogen growth in mixed microbial populations was
simulated as dependent on y0, with ymax∼uniform(min=y0,
max=11 log10cfu/g) to account for the full range of potential
outcomes of interspecific competition (the simulated prior
distribution for ymax has mean=7.2381, stdev=2.1686 (log10
cfu/g)). Finally, the joint prior distribution of tlag and μ was
generated using the updated marginal distributions obtained by
Bayesian synthesis of the monoculture data and specifying the
empirically estimated correlation from the updated joint
distribution (r(tlag,μ)=0.83). A joint prior distribution on all
model inputs (y0, ymax, tlag, and μ) was generated by Monte
Carlo simulation (sample size m=30,000) using @Risk™.

Simulated parameter combinations (θ=y0, ymax, tlag, μ) can
be combined under the Baranyi growth model (1) to predict
mean growth at any time (ḡ t) and thus obtain an implied growth
curve over time. Because the U. Madrid fish trial (ComBase
record P_11L ) does not contain replicates, we estimate the
standard deviation assuming cv=0.25 (calculated based on
observed growth, gtobs) for the likelihood computations. In
general, the likelihood given the observed data is estimated as:

LðhjgobsÞ ¼j
t7

t0
Normalðgtobsjmean ¼ ḡt; stdev ¼ 0:25*gtobsÞ

ð9Þ
The normalized likelihood values provide importance

sampling weights for the m=30,000 parameter combinations.
Simulated parameter combinations (θ) that imply growth curves
not supported by the U. Madrid fish data result in very small
likelihoods (here, normalized likelihood values ranged from
1.58E−196–1.83E−02). A joint posterior distribution on the
Table 5
Prior and posterior distributions for lag time (tlag) and maximum specific growth
rate (μ) in Bayesian synthesis of broth monoculture data

tlag (h) μ (h−1)

Prior Posterior Prior Posterior

Mean 76.4939 53.8320 0.0362 0.0419
Stdev 61.0093 29.4714 0.0203 0.0098
cv 0.7976 0.5475 0.5608 0.2339
% change mean −30% +16%
% change cv −31% −58%
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Fig. 4. Updated joint distribution of lag time (tlag) and maximum specific growth rate (μ) obtained by Bayesian synthesis of L. monocytogenes broth monoculture data.
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Baranyi growth model inputs and outputs is then generated by
importance sampling, with l=1,500 values drawn using Monte
Carlo simulation from the empirical distribution. Monte Carlo
simulation was performed with Latin Hypercube sampling
(1500 iterations) using @Risk™. The updated inputs represent
the posterior joint uncertainty distribution for the Baranyi
growth model parameters (π(θ)). The updated outputs represent
the posterior uncertainty distribution of mean growth at time t
(π(gt)), i.e., uncertainty about the mean growth curve.

Uncertainty about a given percentile of the growth variability
distribution at time t (gt%ile) was estimated by the inverse
normal distribution, assuming cv=0.25 (based on the Buchanan
et al. (1989) data):

gt%ilef NormInvð%ilejmeanfkðgtÞ; stdevf0:25*kðgtÞ
�

ð10Þ
The gt%ile distribution was generated by fixing the percentile

value of the normal variability distribution (e.g., at 95th %ile)
and drawing random samples with replacement from the
empirical posterior output uncertainty distribution (π(gt)).
This bootstrap (Efron and Tibshirani, 1993) procedure was
performed by Monte Carlo simulation with Latin Hypercube
sampling (10,000 iterations) using @Risk™.
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9. Sensitivity analysis

To analyze the sensitivity of the posterior distributions for L.
monocytogenes growth in fish with mixed microbial populations
to the specified prior on themodel inputs, we ignore the results of
the brothmonoculture data analysis and repeat the SIR algorithm
using the pre-Bayesian synthesis prior distributions for tlag and μ
obtained in Sec. 3 (Table 1). The joint prior distribution on y0 and
ymax was fixed at the same values obtained in Sec. 8 (Table 4).

10. Results

10.1. Bayesian synthesis of L. monocytogenes broth mono-
culture data

The results of the Bayesian synthesis can be regarded as
posterior distributions constrained to agree with the specified
Baranyi growth model. The procedure resulted in posterior input
distributions for π(y0) and π(ymax) that were unchanged from
their priors. In contrast, the posterior input distributions π(tlag)
and π(μ) were revised substantially (Table 5). The lag time
parameter underwent the larger relative change in central
location, while the reduction in relative spread was greater for
4 5 6

)

Implied Prior

Stated Prior

Data

Posterior

nocytogenes growth at 5 °C, pH 7, 240 h in broth monoculture.
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the growth rate parameter. With the exception of the posterior
joint distribution π(tlag,μ) (Fig. 4, with r=0.83), the correlation
induced by the Bayesian synthesis procedure between the
Baranyi growth model input parameters was negligible (|r≤1|).
The updated 95% confidence interval for GT (Table 4) contains
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Fig. 6. Prior and posterior distributions of Baranyi model input parameters for L. mon
43% CO2, 57% N2.
the point estimate of 29 h for L. monocytogenes at 5 °C, pH 7
provided by the food microbiology experts (Food and
Agriculture Organization of the United Nations, 1999).

Fig. 5 presents uncertainty distributions of mean growth of
L. monocytogenes in broth monoculture at 5 °C, pH 7 after 240 h
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12

ymax (log10 cfu/g)

cu
m

. p
ro

b.

Prior
Posterior

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.00 0.02 0.04 0.06 0.08
mu (1/h)

cu
m

. p
ro

b.

Prior
Posterior

150 200

Prior

Posterior

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
 mu posterior (1/h)

 p
ro

b.

ocytogenes growth in competition with natural microflora in fish at 5 °C, pH 6.8,



Table 6
Summary of posterior distribution of Baranyi model input parameters for L. monocytogenes growth in competition with natural microflora in fish at 5 °C, pH 6.8, 43%
CO2, 57% N2

Input (units) Mean Stdev 95% Confidence interval Correlation matrix (r)

y0 ymax tlag μ

y0 (log10cfu/g) 3.5 0.2 3.1–3.8 1
ymax (log10cfu/g) 5.9 1.2 4.7–10.1 0.22 1
tlag (h) 37.1 22.0 7.8–78.8 −0.05 −0.47 1
μ (h−1) 0.0295 0.0093 0.0168–0.0479 −0.02 −0.53 0.92 1

(GT=14.5–41.2 h)
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for the implied prior, stated prior, the observed data used to
update the model, and the posterior resulting from the Bayesian
synthesis procedure. The posterior output distribution π(g240)
(mean=3.2, stderr=0.2 (log10 cfu/g)) falls closer to the data used
to update the model (from Pin et al., 2001) than to stated prior
(from Buchanan et al., 1989). It can be shown that if the situation
were reversed—the stated prior was obtained from Pin et al.
(2001), and the data from Buchanan et al. (1989) were used to
update the model—the posterior would fall closer to the results
of Buchanan et al. (1989). In this application, however, the
posterior is intended to reflect L. monocytogenes growth at
elevated CO2 levels (as in Pin et al., 2001) rather than aerobic
conditions (as in Buchanan et al., 1989). The Bayesian synthesis
procedure, however, permits characterization of pathogen
growth at elevated CO2 levels while incorporating information
available from Buchanan et al. (1989) (e.g., uncertainty and
variability in growth under replicated environmental conditions)
not provided by Pin et al. (2001). The Bayesian synthesis
procedure also results in information about the correlation (or the
lack thereof) between Baranyi growth model parameters that is
used to generate the initial approximation of L. monocytogenes
growth required by the SIR algorithm used to model the
pathogen behavior in mixed culture.

10.2. L. monocytogenes in fish with mixed microbial popula-
tions and elevated CO2

Fig. 6 compares the prior and posterior distributions for the
Baranyi growth model parameters (including the joint distribu-
Fig. 7. Estimated uncertainty and variability in L. monocytogenes growth in com
tion of tlag and μ), and Table 6 summarizes the updated input
parameters for L. monocytogenes growth in competition with
natural microflora in fish at 5 °C, pH 6.8, 43%CO2, 57%N2. The
posterior input distribution π(ymax) indicates very large uncer-
tainty in maximum pathogen density (the 95% confidence
interval for ymax spansN5 orders of magnitude), consistent with
simulation of a simple theoretic model of interspecific microbial
competition (Powell et al., 2004). The posterior input distribu-
tions π(tlag) and π(μ) both were revised downward and
tightened. A strong correlation (r=0.92) remains in the posterior
joint distribution of lag time and maximum specific growth rate
(π(tlag,μ)). (Note that the prior joint distribution for tlag and μ in
Fig. 6 is the posterior joint distribution obtained by Bayesian
synthesis of L. monocytogenes broth monoculture data shown in
Fig. 4.) Indeed, the correlation between the lag time and
maximum specific growth rate parameters of the Baranyi growth
model (1) appears to be inherent to the model (Grijspeerdt and
Vanrolleghem, 1999). The updated 95% confidence interval for
GT (Table 6) contains the point estimate of 29 h for L.
monocytogenes at 5°C, pH 7 provided by the food microbiology
experts (Food and Agriculture Organization of the United
Nations, 1999).

Fig. 7 summarizes the posterior output distribution π(gt),
presenting 5% and 95% confidence levels in mean growth of
L. monocytogenes in competition with natural microflora in
fish (hake) at 5 °C, pH 6.8, 43% CO2, 57% N2. (The 5%
and 95% confidence levels are the lower and upper bounds,
respectively, of a 90% confidence interval.) At 230 h (9.6
d), the 95% confidence level for the 95th percentile of the
petition with natural microflora in fish at 5 °C, pH 6.8, 43% CO2, 57% N2.
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estimated growth variability distribution exceeds 3 log10 cfu/
g (indicated by the horizontal and vertical reference lines in
Fig. 7).

10.3. Sensitivity analysis

Fig. 8 compares the posterior distributions for the
Baranyi growth model parameters obtained using the pre-
Bayesian synthesis prior distributions for tlag and μ (pre-
BSYN prior) with those resulting from specifying the prior
using the updated joint distribution of tlag and μ obtained by
Bayesian synthesis of broth monoculture data (BSYN prior).
In particular, the comparison suggests that the Bayesian
synthesis of the broth monoculture data may provide an
overconfident estimate of μ, resulting in an insufficiently
diffuse prior for updating the model based on the U. Madrid
fish trial (ComBase record P_11L). Alternatively, the broth
monoculture data analysis may be interpreted as providing a
better estimate of the maximum specific growth rate intrinsic
to L. monocytogenes due to the greater quantity of data and
the absence of interspecific competition. Table 7 summarizes
the alternative posterior distributions (obtained with the pre-
Table 7
Summary of posterior distribution of Baranyi model input parameters for L. monocyto
CO2, 57% N2 under alternative prior

Input (units) Mean Stdev 95% Confidence

y0 (log10cfu/g) 3.5 0.2 3.1–3.8
ymax (log10cfu/g) 7.8 1.7 5.3–10.8
tlag (h) 37.2 15.7 11.7–71.0
μ (h−1) 0.0197 0.0038 0.0146–0.0301

(GT=23.0–47.4
BSYN prior) for the Baranyi model parameters for L.
monocytogenes growth in competition with natural micro-
flora in fish at 5 °C, pH 6.8, 43% CO2, 57% N2. Note that
the updated 95% confidence interval for GT contains the
point estimate of 29 h for L. monocytogenes at 5°C, pH 7
provided by the food microbiology experts (Food and
Agriculture Organization of the United Nations, 1999).

Although the posterior marginal uncertainty distributions
for the growth model parameters overlap (comparing Tables 6
and 7), the results indicate that the joint posterior distribution
of the model inputs is sensitive to the choice of priors for tlag
and μ. This can be seen in the different shape of the growth
curves in Figs. 7 and 9. The latter summarizes the posterior
output distribution π(gt) under the alternative prior. Neverthe-
less, a decision based on the time until 3 log10 cfu/g growth
would not be very sensitive to the uncertainty about the
growth curve form associated with specification of the prior.
In comparison to the previous estimate of 230 h (9.6 d) (Fig.
7), the 95% confidence level for the 95th percentile of the
alternative growth variability distribution exceeds 3 log10 cfu/
g at 263 h (11d) (indicated by the horizontal and vertical
reference lines in Fig. 9). Similarly, a decision based on the
genes growth in competition with natural microflora in fish at 5 °C, pH 6.8, 43%

interval Correlation matrix (r)
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Fig. 9. Estimated uncertainty and variability in L. monocytogenes growth in competition with natural microflora in fish at 5 °C, pH 6.8, 43% CO2, 57% N2 under
alternative prior.
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time until 1 log10 cfu/g growth would differ by just 16 h (83 h
under the BSYN prior (Fig. 7) vs. 99 h under the pre-BSYN
prior (Fig. 9).

11. Discussion

The SIR algorithm comes with “one important caveat” (Smith
and Gelfand, 1992). The choice of a ratio m / l depends on the
goodness of the first pass approximation to the posterior
distribution (Rubin, 1988). But, it is unclear how we know if
the first pass approximation is decent or whether we always need
m≫ l (Dunsmore, 1988). SIR computational intensity increases
the less the prior resembles the posterior, because a larger initial
sample size m will need to be drawn to adequately estimate the
posterior. In this paper,we have usedBayesian synthesis (Raftery
et al., 1995) of assorted relevant information to be confident in
obtaining a “decent first pass approximation” to the growth of L.
monocytogenes under competitive growth conditions. In general,
any particular data set provides partial information about the
system being investigated under the specific conditions under
which the data were generated. In cases where a “gold standard”
is unavailable, performance measures based on model validation
concepts provide little guidance about how to draw reasonable
inferences from available, imperfect information. In cases where
ideal data are available, they may be of limited quantity, provide
little information about the underlying biological process, or
both. In either case, Bayesian statistical methods such as
Bayesian synthesis (Raftery et al., 1995) and SIR (Rubin,
1988) provide useful analytical tools for integrating available
information from disparate sources to develop models for use in
microbial pathogen risk assessment.

Given the paucity of experimental data available on
pathogen growth under competitive conditions, it may be
tempting to generalize from this analysis to make broader
inferences about L. monocytogenes growth in foods with
mixed microbial populations. It should be noted, however,
that the U. Madrid fish trial (ComBase record P_11L)
occurred under specific abiotic and biotic conditions. The
path and outcome of complex microbial community dynamics
may vary dependent on microbial composition, initial
densities, and the sequence of contamination events (Powell
et al., 2004). Analytical methods for synthesizing the typically
motley assortment of data available for microbial risk
assessment provide a measure of protection but are no
panacea for overconfidence.
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